

<u>aifernandes@egasmoniz.edu.pt</u>

Rethinking Science Teaching for the 21st Century: A SWOT Analysis of a Multi-Strategic Model

Ana Isabel Fernandes¹ & **Margarida Miranda**^{1,2}

¹ Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, Almada, Portugal ² Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Portugal

Introduction

□ The rapid evolution of scientific knowledge, coupled with the complexity of professional demands in science-related fields, calls for innovative pedagogical approaches that move beyond traditional, lecture-based instruction.

- In science education, there is a growing emphasis on fostering deep learning, critical thinking, autonomy, and transferable skills essential for lifelong learning and adaptability [1,2].
- □ The Integrated Multi-Strategy Teaching in Science (IMTS) approach responds to these imperatives by blending diverse evidence-based strategies into a cohesive model, ensuring development of essential academic and professional skills aligned with the needs of 21st-century science graduates.

Aims

- Report the IMTS practice and present a SWOT analysis of the methodology as applied in a university-level science course. based on student outcomes and engagement levels, and the reflective input of the faculty members.
- Identify benefits and limitations of the model, as well as its potential for scaling and institutional integration across academic contexts..

Methodology

IMST Pedagogical Model

Assessment Methods

Results

Enhanced Learning Outcomes

Active student involvement and responsibility (7.11)
Skill development: research (7.56), communication (6.87), critical thinking (7.10)

Promotes learning efficiency (6.81) and integration of content

 Varied, dynamic activities (peer evaluation, roleplay, OSCPE) enhance engagement

✓ Final projects mimic real-life tasks and support curricular integration

Expansion and Improvement

Implementation Challenges

- High time demand for students (8.35) and professors (prep/grading)
- Moderate enjoyment (6.52) and low enthusiasm (5.81)
- Limited class time for in-depth discussion or individual feedback
- Difficulties with large groups, peer-review logistics, and Moodle data handling
- Challenges for students with low autonomy or English proficiency

* Recognized as Good Pedagogical Practice (2024)

- * Transferable across disciplines and adaptable to other curricula
- * Al integration enhances real-world alignment
- Gamification and flexible assessment strategies can boost motivation

Combined SWOT analysis integrating the perspectives of students (grade in parenthesis) and professors, highlighting commonalities and contrasts.

Drawbacks

Potential

- Student resistance to non-traditional methods or self-directed work
- Risk of inequity for less prepared students
- Burnout risk for faculty; limited infrastructure support

Conclusions

- □ The IMST model effectively cultivates active learning, professional competencies, & curricular integration.
- While students and professors alike recognize its educational value, its sustainability depends on addressing structural, logistical, and motivational barriers.
- Balancing innovation with realistic workload expectations and inclusive design is key to broadening its acceptance and impact across diverse learning environments.

1. Biggs, J.; Tang, C.; Kennedy, G. Teaching for Quality Learning at University; 5th ed.; Open University Press - McGraw Hill:, 2022 ISBN 9780335250820.

2. Prince, M. Does active learning work? A review of the research. J. Eng. Educ. 2004, 93, 223–231.

The authors gratefully acknowledge the fourth-year pharmacy students that over the years have willingly engaged in this pedagogical experience and provided input for continuous improvement

