

POSTER 37

Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics

Ricardo Jorge Pais^{1,2*}, Tiago Alexandre Pais¹, Uraquitan Lima Filho¹

¹ Bioenhancer Systems LTD, Manchester, United Kingdom; ² Egas Moniz for Interdisciplinary Research (CiiEM), Caparica, Portugal; * Correspondence: RP ripais@bioenhancersystems.com

BACKGROUND

Accurate cancer survival prognosis remains a major challenge in oncology, with single biomarker approaches often lacking sufficient specificity and sensitivity for clinical application. Recent advances in transcriptomic profiling and artificial intelligence (AI) offer promising new directions to identify

RESULTS

biomarker panels for cancer prognostic

combinations of molecular features that better predict patient outcomes. In this study, we applied our AutoML algorithm **O2Pmgen** via the **Digital Phenomics** platform to tumour transcriptomic datasets from The Cancer Genome Atlas (TCGA) for breast, lung, and renal cancers. We further benchmarked our achievements with a well-established autoML approach (**TPOT**) and a single predictive biomarker approach (**BMfinder**).

METHODOLOGY/FRAMEWORK

THE HUMAN PROTEIN ATLAS

https://www.proteinatlas.org/humanproteome/cancer/data#tcga_cancer_samples_rna

Breast cancer prognostic models performance

	Single	EMT genes	Panel
AUC	62%	65%	83%
Sensitivity	84%	95%	62%
Specificity	42%	40%	62%

Lung cancer prognostic models performance

Single **Small panels** EMT genes

AUC	60%	63%	75%
Sensitivity	71%	79%	81%
Specificity	40%	50%	61%

Renal cancer prognostic models performance

	Single	EMT genes	Small panels
AUC	62%	58%	71%
Sensitivity	73%	82%	81%
Specificity	41%	63%	60%

- Bespoke predictive models based on small gene panels single biomarker and large gene panel outcompete approaches.
- Predictive models based on small gene panels are solutions for cancer prognosis.

References

- **1.** Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial Intelligence for Proteomics and Biomarker Discovery. Cell Syst. 2021, 12, 759–770.
- 2. Le, T.T.; Fu, W.; Moore, J.H. Scaling Tree-Based Automated Machine Learning to Biomedical Big Data with a Feature Set Selector. Bioinformatics 2020, 36, 250–256.
- 3. Filho, U.L.; Pais, T.A.; Pais, R.J. Facilitating "Omics" for Phenotype Classification Using a User-Friendly AI-Driven Platform: Application in Cancer Prognostics. BioMedInformatics 2023, 3, 1071-1082.
- 4. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357, eaan2507.

Acknowledgments

This research was fully supported by Bioenhancer Systems. The project also received support from the UK government funded Innovation Navigator **Programme (UK Business Growth Hub).**

Funded by

