# EVALUATING THE IMPACT OF LONG-TERM EXPOSURE TO AMBIENT PM<sub>2.5</sub> on lung cancer incidence and mortality: A comprehensive meta-analysis

# Mariana Corda<sup>1,2</sup>, Carla Martins<sup>2</sup>, Ricardo Assunção<sup>1,3</sup>

<sup>1</sup> Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal <sup>2</sup>

NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, REAL, CCAL, NOVA

University Lisbon, Lisbon, Portugal <sup>3</sup> Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz,

1649-016 Lisbon, Portugal

# INTRODUCTION

LUNG CANCER is recognised as one of the most common causes of

### **RESULTS AND CONCLUSIONS**

The random-effects meta-analysis revealed that a 10 µg/m<sup>3</sup>

cancer morbidity and mortality worldwide<sup>1</sup>, and it is the second

leading cause of death, with the highest number of years of life lost

in highly developed regions<sup>2</sup>. It is widely recognized that ambient

exposure to particulate matter with a diameter below 2.5  $\mu$ m (PM<sub>2.5</sub>)

represents the foremost global environmental risk factor<sup>1,2</sup>, being

associated with several health outcomes, including lung cancer,

ischemic heart disease, and chronic obstructive pulmonary disease<sup>3</sup>.

### AIM

To derive exposure-response relationships reflecting the relationship between lung cancer incidence and mortality cases as function of exposure to ambient  $PM_{2.5}$ .



Is exposure to PM<sub>2.5</sub> associated with an increased risk of

increase in long-term PM<sub>2.5</sub> exposure was associated with an

#### increase of 25% in the combined risk of lung cancer incidence and

#### mortality (pooled risk estimate: RR = 1.25 (95% CI: [1.11; 1.41])).

| Author                          | Year                | Country        | Outcome   | Risk Ratio | RR     | 95%-CI       | Weight |
|---------------------------------|---------------------|----------------|-----------|------------|--------|--------------|--------|
| Gowda et al.                    | 2019                | USA            | Incidence |            | 0.85   | [0.53; 1.36] | 1.2%   |
| Bauwelinck et al.               | 2022                | Belgium        | Mortality |            | 0.97   | [0.95; 0.98] | 5.6%   |
| Wang et al.                     | 2020                | China          | Mortality |            | 1.00   | [1.00; 1.00] | 5.6%   |
| Wang et al.                     | 2020                | China          | Mortality |            | 1.04   | [1.03; 1.04] | 5.6%   |
| Chen et al.                     | 2020                | Canada         | Incidence |            | 1.04   | [1.03; 1.05] | 5.6%   |
| Guo et al.                      | 2016                | China          | Incidence |            | 1.07   | [1.06; 1.09] | 5.6%   |
| Pope et al.                     | 2019                | USA            | Mortality | -          | 1.08   | [0.99; 1.18] | 5.0%   |
| Erhunmwunsee et al.             | 2022                | USA            | Incidence |            | 1.10   | [1.10; 1.11] | 5.6%   |
| Yin et al.                      | 2017                | China          | Mortality | +          | 1.12   | [1.09; 1.16] | 5.5%   |
| Wong et al.                     | 2016                | China          | Mortality | +=         | 1.14   | [0.96; 1.36] | 3.7%   |
| Pun et al.                      | 2017                | USA            | Mortality | +          | 1.15   | [1.12; 1.18] | 5.5%   |
| Hart et al.                     | 2015                | Netherlands    | Incidence | +          | 1.17   | [0.93; 1.47] | 3.0%   |
| Lo et al.                       | 2022                | China          | Incidence |            | 1.17   | [1.01; 1.37] | 4.0%   |
| Cheng et al.                    | 2022                | USA            | Incidence |            | 1.20   | [1.01; 1.43] | 3.7%   |
| Cierpiał-Wolan et al.           | 2023                | Poland         | Incidence |            | 1.22   | [1.20; 1.23] | 5.6%   |
| Gharibvand et al.               | 2017                | USA            | Incidence |            | 1.32   | [0.88; 1.98] | 1.5%   |
| Tomczak et al.                  | 2016                | Canada         | Incidence |            | 1.34   | [1.09; 1.64] | 3.3%   |
| Klompmaker et al.               | 2021                | Netherlands    | Mortality | +          | 1.37   | [1.34; 1.40] | 5.6%   |
| Lepeule et al.                  | 2012                | USA            | Mortality |            | 1.37   | [1.07; 1.75] | 2.8%   |
| Katanoda et al.                 | 2011                | Japan          | Mortality |            | 1.41   | [1.21; 1.64] | 4.0%   |
| Shin et al.                     | 2022                | South Korea    | Mortality |            | 1.55   | [0.86; 2.79] | 0.8%   |
| Chen et al.                     | 2023                | United Kingdom | Incidence |            | - 2.14 | [1.14; 4.01] | 0.7%   |
| Cierpiał-Wolan et al.           | 2023                | Poland         | Incidence |            | 2.62   | [2.59; 2.64] | 5.6%   |
| Huang et al.                    | 2021                | United Kingdom | Incidence |            | 2.66   | [2.40; 2.95] | 4.8%   |
| Random effects model (HK)       |                     |                |           | •          | 1.25   | [1.11; 1.41] | 100.0% |
| Prediction interval             | _                   |                |           | <b></b>    |        | [0.96; 1.63] |        |
| Heterogeneity: $I^2 = 99.9\%$ , | $\tau^2 = 0.0155$ , | p = 0          |           |            |        |              |        |

When analysed separately, PM<sub>2.5</sub> exposure was associated with



#### **<u>11% increase in lung cancer incidence risk</u>**

(RR = 1.11; 95% CI: [1.04; 1.18])



#### developing lung cancer?

# METHODS



A comprehensive search was performed across multiple

literature databases for studies published between

January 2010 and July 2023.



Based on predefined eligibility criteria, a total of 27

studies were included in the final analysis.



- A random-effects meta-analysis, standardizing <u>effect sizes</u> to a 10  $\mu$ g/m<sup>3</sup> increase in PM<sub>2.5</sub>, beta-coefficients were used.
- Heterogeneity was estimated using restricted maximum



#### 14% increase in lung cancer mortality risk

(RR = 1.14; 95% CI: [1.04; 1.25]).

Substantial heterogeneity was observed across all meta-analyses

(I<sup>2</sup> > 80%), suggesting considerable variability between studies.

Egger's test indicated no statistically significant evidence of

publication bias for incidence.



#### Long-term exposure to PM<sub>2.5</sub> is significantly

associated with an increased risk of lung cancer.

Nevertheless, given the considerable heterogeneity observed, in

addition to the potential impact of small-study effects, a cautious

interpretation of these results is imperative. It is recommended that

future research endeavours focus on the identification of sources of

likelihood. Between-study heterogeneity was assessed with the I<sup>2</sup>

statistic and tau<sup>2</sup>, with I<sup>2</sup> > 80% indicating substantial

heterogeneity.

 Subgroup and sensitivity analyses were conducted to <u>explore</u> sources of variability and assess the robustness of findings.

Publication bias was evaluated using funnel plots and Egger's

regression test, provided enough studies was available.

Analyses were conducted using the 'meta' package in R (v 4.3.2).

variability and the conduct of comprehensive analyses. This will

facilitate more precise estimation of the long-term health and

economic impacts. The dissemination of findings from such

research will inform the development of targeted prevention

strategies and policy support.

### REFERENCES

<sup>1</sup>IARC (2025) Global lung cancer incidence according to subtype: new study highlights rising adenocarcinoma rates linked to air pollution <sup>2</sup>Global Burden of Disease Collaborative Network. (2023) Global Burden of Disease Study 2023 (GBD 2023); <sup>3</sup>WHO. (2024) Fact sheet: Ambient (outdoor) air pollution.



